

Caka, Amarildo
Nunes, Guilherme

Santos, Jefrey

CapScript:
Strongly Typed ECMAScript

subset for Capitual

2018

 2

Caka, Amarildo <amarildo.caka@capitual.io>
Nunes, Guilherme <guilherme.nunes@capitual.io>

Santos, Jefrey <jefrey.santos@capitual.io>

CapScript:
Strongly Typed ECMAScript

subset for Capitual

2018

 3

Abstract

JavaScript ecosystem is growing fast. The programming language that, in the past, had
only been used for animated page effects and user input validation, nowadays powers
entire websites, from personal blogs to entire banks. One of the language characteristics
that can be considered responsible for its sudden acceptance is the ease of use. However,
non-experienced programmers who adventure themselves on developing systems that they
aren't actually able to develop are putting companies, clients and their own career on a
high risk.

In this document, we have pointed some of the concerns that it's needed to stay aware on
when working with JavaScript for business-grade applications. We also present companies
that have switched their code bases to JavaScript and do not regret it. Finally, we will study
Capitual's case, where the entire core-banking is developed using CapScript, a
programming language developed internally that is based on JavaScript.

 4

Table of Contents

Introduction ___ 5
Finances need accuracy ___ 5
Finances need reliability ___ 6

Type checking as a way to avoid software bugs ____________________________ 8
JavaScript data types __ 8

Numbers (0, 1, 1e2, 1.5 , 1e-9) ___ 8
Strings ("Hello, world") __ 9
Object ({foo: "bar"}, [1, 2, "foo"]) ____________________________________ 9

A note about JSON __ 9
Boolean (true, false) __ 9
Functions (function fn() {}, function() {, () => {}) _________________ 10
Undefined (undefined) __ 10

An overview on JavaScript type checking methods ________________________ 10
CapScript __ 12

It's all about JavaScript - a more robust one _______________________________ 12
Which features do CapScript support? ____________________________________ 13

Strong typing___ 13
Fully ES6, ES7 and ES8 compliant__ 14

Classes ___ 15
Constants and scoped variables (let) ______________________________________ 15

Arrow functions (() => {}) __ 15
Default function argument values ___ 15
Variable destructuring __ 16
Rest Operator ___ 16
Spread ___ 17
Template literals ___ 17
Short property notation __ 17
Import/export __ 18
Promises __ 18
Async/await ___ 19

Adopted TC39 Proposals __ 20
BigInt and BigDecimal __ 20
String.prototype.trimStart / String.prototype.trimEnd __________________________ 21
Throw expressions ___ 21
Math extensions ___ 21

Math.clamp ___ 22
Math.scale __ 22
Math.radians and Math.degrees ___ 22
String.replaceAll ___ 22
Slice notations___ 23

Conclusion ___ 24
References ___ 25

 5

Introduction
Although JavaScript’s syntax may resemble C and C++ (such as with if/else structure),

a huge difference felt by programmers who are used to develop using the former
languages is that JavaScript has dynamic typing. (Flanagan, 2011)

JavaScript variables aren't required to be declared with a type, such as integer or char.
They acquire a data type once they receive a value, but the data type can be modified
easily simply by changing the variable value. Furthermore, JavaScript data typing is weak
enough to convert types automatically on comparisons and operations.

JavaScript Specification's section 11.9.3, which states about the abstract equality operator
(==), a comparison between a string and a number (e.g.: "1"==1) implies that the string

gets converted to number as well.

It is possible to apply type-checking on a JavaScript system, despite its nature of ignoring
type mismatching. And it is highly recommended. However, since it's not required to run a
JavaScript system, it's easy not to follow these practice standards, and the reasons aren't
few: short deadlines, team changes are mentionable reasons, however, since the code
may actually work without type checking, even code reviewers may let this go unnoticed.

JavaScript dynamic checking is part of what makes JavaScript nice for prototyping and
gives developers the speed and productivity they seek. Creating variables without having to
worry about its type (at least in most of the times) allows developers to code faster, but if
the required attention is not given, this feature can put the programmer on a trap coded by
himself.

Finances need accuracy

In financial environment, accuracy is required. This is why, for example, float type is
avoided: a floating-point problem may produce a difference in one or more calculations and
this difference might result in losses to the application. That's why it is recommended to
stay away from floating points, using either integer values only (in this case, storing cents
instead of dollars, for instance) or, even better, BigDecimal, which is a library that had been
ported to different platforms that is able to do calculations on decimal numbers represented
as strings, on the same way a human would do with a paper and pen in hands.

All this accuracy makes us believe that a system that is programmed not to have errors in
calculations, even in small margins like 10-8, cannot chain procedures after receiving
a null or a false, accepting it as ok since the expected value was 0.

The set of problems that ignoring such situations is lengthy and directly proportional to the
application scale. Bugs get harder to be found out, and an old known developers law says
that the more a bug is delayed to be found, the harder it will be to be fixed.

However, such accuracy cannot be obtained quickly. And huge companies and bank tend
not to fix what is not broken. If a solution still works, a banking company finds it not

 6

practical to re-implement their entire set of services with new technologies, training their
employees and clients to use the newly produced solutions. This is the reason why banks
tend to work with the same software solutions that they produced years ago, working on
mainframes, even during the cloud century.

Finances need reliability

One advantage that existing core-banking solutions employed by commercial banks,
undeniably, is that some of them are running for decades, serving entire countries, with
stability and too rare downtimes. Capital One is working with NodeJS for a good portion of
its banking services, and recognized, through their software engineer Azat Mardan, that
nowadays it's hard to find a business unit that is not using NodeJS. However, they made it
clear that aren't going to replace legacy applications, where Java has been used: We
invested a lot in Java in the last 10 to 20 years; we’re not going to redo everything in
Node.js. But with new projects, we are using Node.js. (NodeJS Foundation, 2011)

While Capital One has showed an interesting move towards adopting JavaScript on their
internal business applications, their case also has revealed a strong reason why banking
companies tend not to switch their banking solutions for new technologies. Throwing away
their current solution means years of investment being lost. It's obviously expected that
things change in a near future, in technologies sector, making it more interesting for huge
companies to switch to cloud-based computing and new technologies.

The largest financial application running on NodeJS is, nowadays, PayPal.

Both Capital One and PayPal agreed that working with NodeJS added ease to the
development process. The mentioned reason was the fact that the same programming
language had been used both on the application backend and the frontend. Thus, instead
of different teams writing documentations for each other, they could basically call a
relatively small team of developers on the same room and they all spoke the same
language. (Harrell, 2013)

NodeJS have good examples of relevant commercial applications running on its
environment. On the group of finances, aside from PayPal, we can also mention Walmart,
Groupon, Alipay and EBay. A filterless naming also brings Netflix, LinkedIn, Uber, Nasa,
Mozilla and Microsoft, which are also NodeJS users who also help in developing the
framework. (Collinsworth, 2017)

One could argument that, since it has been chosen by such companies, using JavaScript
and NodeJS can be considered safe and less prone to errors. JavaScript’s relatively short
learning curve, when compared to languages that are largely used on enterprise-grade
systems such as Cobol, Java and C/C++, and proved gain of productivity (Harrell, 2013)
seems to endorse this affirmation.

Flanagan (2006), in the fifth version of his book JavaScript: The Definitive Guide, has made
a comment that, although removed on the last version of his book, did not lose
validity. JavaScript is not simple, he starts. Programmers who attempt to use JavaScript for
non-trivial tasks often find the process frustrating if they do not have a solid understanding
of the language.

 7

JavaScript is, somewhat, forgiving to unsophisticated developers (Flanagan, 2006), and
part of this forgiveness comes from its dynamic typing. It's easy to put online a fully working
system with JavaScript. Actually, with just 3 lines of code, you have a full featured HTTP
server to serve static files. It makes JavaScript attractive to developers who see in the
language a simple (yet powerful) entry point. This, of course, does not mean that it is not
possible to develop high quality, production-ready, enterprise-grade applications with
JavaScript.

But developing reliable systems is not as simple to learn. It takes several years of
experience in projects with exemplary code bases, in well trained teams, to deeply
understand the development process of softwares that are going to be accepted by
businesses.

 8

Type checking as a way to avoid software bugs

Having said that JavaScript’s dynamic typing is an attractive to unsophisticated developers,
one may understand that dynamic typing is a feature for unsophisticated languages.
Therefore, it's worthy to make it clear that this is not the case. Dynamic typing is powerful,
but it has to be used consciously.

The present is also not trying to state, also, that type checking is able to make code totally
safe.

About 15% of software bugs could be discovered before runtime if type checkers were
used (BARR; BIRD; GAO, 2017). Also, typing sums up verbosity to the code, which makes
it clearer for a possible reviewer or maintainer how the code works. Complex errors
handling are also avoided, since when using dynamic typing, hours of debugging are spent
just to verify if a variable that should receive an integer value is, in fact, receiving an integer
value. (HAYAT et al, 2017)

Type checkers often run on compile time, but JavaScript is not a compiled language. A
JavaScript type checker had to run, therefore, by transpilating the source code to native
JavaScript.

Native JavaScript does not need to be converted to bytecode as well. Thus, in order to add
static type checking to JavaScript, some kind of transpilation would be needed, since
during the transpilation, the type checking occurs and native wrappers for the type
checking are written to the output built file.

Static type-checking is also not enough to detect any kind of type mismatch issues at build
time. Softwares tend to get fed up through different external methods. If you are going to
need an user input, a CSV file or a HTTP request result, since type checkers do not run the
script, these issues will not be detected by them. In this case, runtime type checking is
made needed.

JavaScript data types

JavaScript recognizes six data types (W3Schools):

Numbers (0, 1, 1e2, 1.5 , 1e-9)

JavaScript does not make difference between integers and decimals. They are all stored as
floating-point values, following the IEEE 754 standard. It allows JavaScript to represent
numbers from ±5 × 10−324 to ±1.7976931348623157 × 10308.

JavaScript numbers can be presented as:

• Integer values (0, 1)

• Decimal values (.5, 1.2)

• Scientific notation (10e9, 10e-9)

• Built-in constants (Math.PI, Math.E)

 9

•

Strings ("Hello, world")
JavaScript strings are wrapped by single (') or double quotes ("). The language stores

strings as a sequence of 16-bit Unicode values.
An interesting difference between JavaScript and other languages is that in JavaScript,
strings are immutable. While in C/C++ developers are able to modify, for instance, the
second string character simply by editing variable_name[1] (since it starts at 0), in

JavaScript this is not possible.
Therefore, if one finds it needed to modify internal characters of a string, ends up redefining
the string value. Of course it's possible to use the .substr() method to capture parts of

the string that will remain.

Object ({foo: "bar"}, [1, 2, "foo"])
Perhaps the more important data type on an object-oriented programming language,
objects are largely used to store different types of data. Their structure is similar to
associative arrays. Whether using built-in structures (such as with
the Date() implementation or regular expressions), or structures defined by the developer

(through JSON), nearly any software developed using JavaScript will make use of objects.

Objects' properties are mutables and always passed as references. This means that when
one function changes an object property, the change is valid globally.

Arrays are special objects that store ordered collections of values. These values can have
any JavaScript supported type (including other arrays). JavaScript's standard array
implementation does not support associative arrays (these are plain objects).

A controversial fact about JavaScript is that null is also an object.

A note about JSON

JSON (JavaScript Object Notation) as we know derived from JavaScript objects. It is,
basically, how to write objects in JavaScript. These objects contain properties which types
can be any of JavaScript's supported data types (including another object).

Although nowadays it's a public format, being easy for machines and humans to read and
write made it largely used by several programming languages (JSON, 2018). Nowadays,
it's easy to see JSON files used for defining or storing user settings, and the JSON format
is largely used in web services and APIs. Every time one runs a social network or banking
application on a smartphone, there is a huge chance that the smartphone is talking to the
servers through JSON.

Boolean (true, false)

Boolean values store the simplest programming definitions.

In comparisons using abstract equality operator (==) with numbers, boolean values get

converted to numbers (ECMA, 2011). As expected, Number(false) ==

0 and Number(true) == 1.

 10

Functions (function fn() {}, function() {, () => {})

In JavaScript, functions can be created through definition or declaration.

When functions are created through definition, the interpreter reads them before executing
the code's main entry point, so the functions are available on their scope as soon as the
interpreter starts executing from the entry point.

On the other hand, functions created through declaration are commonly used as
anonymous (unnamed) functions, but they can be named as well. In many cases, these
functions are used directly into callbacks, but they can be associated to variables, object
properties or arrays items.

Undefined (undefined)
Any undeclared variable or function is undefined. Deleted object properties also

become undefined.

Checking if the type of a variable is undefined allows the programmer to verify if a variable
or function was already declared or is present on a remote API response.

An overview on JavaScript type checking methods
Elliot (2016) mentions that although JavaScript lacks static type checking, it does not mean
that no type checking should be done. The interpreter does dynamic type checking at
runtime, but it is very forgiving and only throw errors on extreme situations, such as
invoking undefined as a function.

The most basic type checking method consists in using typeof to check if variables

comes on the expected data type and interrupt the workflow if this condition was not met.
JavaScript

if (typeof variable !== 'string')
 throw new Error('variable should be string')

However, one can argue that this is too verbose. In fact, doing so for every used variable
looks like a nightmare, and it's possible to end up with more codes for variable checking
than for producing the function effect itself.

For this reason, some developers have created libraries or JavaScript subsets that gifts
developers an easier way for type checking their variables.

Facebook and Microsoft are showing movement towards JavaScript type checking. The
social network team keeps a JavaScript type-checking tool named Flow. It is developed
using OCalm and runs static type checking on build time.

Meanwhile the Operating Systems giant claims to have developed their own JavaScript
superset, presenting their creation as a new programming language. They are proud on
saying that the TypeScript compiler is written in TypeScript.

 11

While TypeScript must be transpilled to JavaScript before deploying to production, Flow's
checker is an external binary that must be run in order to check the variable types. (Kyle,
2017)

 12

CapScript

While the solutions mentioned on the previous chapter are interesting moves from these
companies and the open source community, at Capitual it was found to be needed to
develop our own subset of JavaScript, to be used both on the core-banking and in Capitual
interfaces (initially these are WebSockets, REST API and IMTP Protocol, although
interfaces does not depend on the core-banking and can be added, removed or modified
with no side-effects).

Keeping our own JavaScript subset, named CapScript, allowed us to stay always one step
further, since we are able not only to create new language features, but also to adopt new
implementation proposals sent to JavaScript's TC39 (Ecma International, Technical
Committee 39). At the end, even if these proposals don't get accepted by ECMA to
integrate on the native JavaScript, we are still able to define whether CapScript will remain
supporting the feature or also drop it.

Other mentionable benefits that we've been able to register by keeping a JavaScript subset
were:

• Easier adoption of coding standards
• Code optimization at transpile time
• Language modification for new needs
• Future-proof code base
• Improved security due to transpile-time checks

It's all about JavaScript - a more robust one

CapScript gets transpilled to native JavaScript on runtime. This is done using Babel. Using
Babel, we can create plugins with features that CapScript is going to support, in order to
distribute it to developers who are working on Capitual's code base. Once they learn what
they can do with CapScript, the code base gets more consistent.

Furthermore, no native JavaScript features had been removed. It allows us to keep our
code base up to the date not only by new CapScript features, but also with JavaScript
updates.

Developing using Babel allows us to create the CapScript features with JavaScript, through
developing Babel plugins. Capitual developers make use of babel-node, a Babel

interpreter that runs on the fly, but it is not suitable for production.

When a new Capitual version is ready to go live, before deploying to our production
servers, the entire codebase gets transpilled by Babel to JavaScript. All the CapScript
features are ported to JavaScript, through native functions and snippets that are added
over the code body, when needed.

With Babel we can also add transpile-time code optimizations, reducing the servers
latency, giving users quicker response times.

 13

CapScript is a mix of the best of different worlds: while it maintains up-to-date JavaScript
features (as we try to keep Capitual's code as updated and future-proof as possible by
looking at newly released NodeJS and ECMAScript stable versions and look at our entire
code base, looking for portions that can be rewritten at a more concise way with the new
language features), it also keeps looking at interesting ECMAScript proposals and
implements these before JavaScript itself (even though some of these proposals aren't
going to be accepted by ECMA; in this case, we take their reason into consideration in
order to decide whether CapScript will remain supporting that feature). But what makes
CapScript totally suitable for Capitual development is the fact that the ideas that get
implemented officially in CapScript comes from the daily needs at Capitual labs.

One may ask whether these features should be sent to Babel or even to ECMA, as
proposals. For this, Capitual team decided that CapScript features shall not be part of
ECMAScript.

JavaScript is a neutral language, which allows developers to create and maintain different
kinds of systems. CapScript is specifically business-related. At Capitual, as it was revealed
on this document, developers believe that specifying variable types makes the code more
robust and less prone to production errors. We believe using CapScript is ideal for
business-related projects, but it's needed to keep in mind that JavaScript shall also work for
simple tasks. Also, since even the data types aren't standard, but specially fit for our
businesses needs, and data typing requires a wider knowledge from the developer (in other
words, CapScript is not as forgiving as JavaScript is), we don't think CapScript features
could fit standard JavaScript in any way.

Which features do CapScript support?

Capitual's core-banking code base is entirely written using CapScript. A developer, at first
sight, is able to notice that CapScript is, in fact, JavaScript, but with important modifications
on its syntax.

In this chapter, we list some of the syntax modifications that CapScript had. We will not
focus on code optimization techniques, since these are run at transpile-time and produce
almost unreadable and minified code.

Strong typing

CapScript's typing is based on TypeScript and Flow, on its syntax. It supports custom
types, which allows developers to have name and wallets types that resolve

to string and objectrespectively, instead of using string and object directly. It

improves code readability and reduces exposition to risk of production errors of type
mismatching. Custom types are declared as:
JavaScript

typeset name = string
typeset wallets = object

These can be exported as ES6 modules, so it's possible to maintain different custom types
on an external file that gets imported by every file that is going to make use of these types.
For example:

 14

JavaScript

export typeset name = string
export typeset wallets = object

An usage example could be:

JavaScript

import {name, wallets} from './types'

let userName : name = "John Doe"
let userWallets : wallets = {}

However, CapScript native types are more strict than standard JavaScript types. By
importing types from a forked version of check-types package, it can verify not only if a

variable is a string, but also if the string is not empty. We can make it more concise by
writting:
JavaScript

export typeset name = nonEmptyString
export typeset wallets = nonEmptyObject

Obviously we can get back to native dynamic type checking at all. In CapScript allows it to
be done in three different ways:

JavaScript

// by defining type as "any"
let userBio : any

// by defining type as "variant"
let userBio : variant

// or by no defining any type at all
let userBio

If needed, we can also use maybe-types. Defining a variable as maybe-type implies that it
can be undefined or null, or have value according to the specified type. For instance:

JavaScript

let optionalOption : maybe.string = null // ok
optionalOption = "abc" // ok
optionalOption = 123 // TypeError

Fully ES6, ES7 and ES8 compliant

Although browsers and NodeJS does not fully support ES7 as of the time of the writting,
CapScript stays always one step further.

When Capitual's core banking was developed, much of the JavaScript features used
weren't supported natively by NodeJS interpreter. Interestingly, some of these features
were too often used.

Below, we have listed a few features that CapScript had already support to, at the time of
the core-banking development. We have preffered to keep the examples as native
JavaScript for an easier understanding.

 15

Classes

It's possible to create and extend classes, and declare a constructor method that gets

called automatically once the class is instanced with new.

JavaScript

class HelloUser {
 constructor(userName) {
 this.userName = userName
 }
 sayHello() {
 return `Hello, ${this.userName}!`
 }
}

let greeting = new HelloUser("John")
greeting.sayHello() // Hello, John!

Constants and scoped variables (let)

It's possible to declare variables that aren't allowed to be modified.

JavaScript

const APItoken = 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX'
APItoken = 'foo' // TypeError: Assignment to constant variable.

It's also possible to declare variables that are only valid on their scope.

JavaScript

function test() {
 let foo = 'bar'
}

console.log(foo) // ReferenceError: foo is not defined

Arrow functions (() => {})

Arrow functions are a shorter way to declare functions. An interesting fact is that it does not
have it own scope.

JavaScript

fetch('https://someapi.com/read.json').then((res) => {
 console.log(res)
})

Default function argument values

By default, ES5 did not support default argument values on the functions. It had to be done
so:

JavaScript

function showGreeting(user) {
 user = user || "User"

 16

 return "Hello, "+user
}

With ES6 and CapScript, it can now be done as:

JavaScript

function showGreeting(user = "User") {
 return "Hello, "+user
}

Variable destructuring

Destructuring allows obtaining, on an easier way, only the needed data from objects. For
example:

JavaScript

let userData = {
 name: 'John',
 bio: 'Lorem ipsum dolor sit amet'
}

let { nome } = user

console.log(nome) // John

It can also be done on the function arguments. Capitual Development Standard states that
any function with 3 or more arguments should use argument destructuring.

JavaScript

function greetUser({user = "John", isInBirthday}) {
 return "Hello, "+user+"!" + (isInBirthday ? " Happy birthday!" : "")
}

Mainly for big functions, it's a more pleasant task to call destructured arguments-functions,
since one is not lost with the argument order:

JavaScript

greetUser({
 user: "Jane",
 isInBirthday: true
}) // Hello, Jane! Happy birthday!

Rest Operator

Note that this is not about the REST API interface.

Rest operators offer an easy way to copy array contents from one to another. Example:

JavaScript

let mostRecentUsersIDs = [1, 2, 3, 4, 5];

 17

let [first, second, ...remaining] = mostRecentUsersIDs;

console.log(first); // 1
console.log(second); // 2
console.log(remaining); // [3, 4, 5]

Spread

Spread operator is similar to the rest operator, but it copies key & value pairs from one
object to another. Example:

JavaScript

let copySettingsFromThisGroup = { group: 1, name: "Foo", privacy: "public" }

let newGroup = { ...copySettingsFromThisGroup, group: 2 }

console.log(group) // {group: 2, name: "Foo", privacy: "public"}

Template literals

It's also possible to include JavaScript variables inside strings without concatenation.

This has already been showed on a previous example:

JavaScript

sayHello() {
 return `Hello, ${this.userName}!`
}

Through string concatenation, it should be written so:

JavaScript

sayHello() {
 return "Hello, "+${this.userName}+"!"
}

Short property notation

If one wants to insert a property on an object which key is the same name as the variable
that stores its value, probably it would be done so:

JavaScript

var foo = 'bar'
var obj = { foo: foo } // { foo: "bar" }

With short property notation, the redundancy is avoided:

JavaScript

var foo = 'bar'

 18

var obj = { foo } // { foo: "bar" }

Import/export

Importing and exporting variables, classes and functions is made easy, and
populating module.export is not needed (although it is done behind the walls):

JavaScript

export name = "John"
export surname = "Doe"
export getFullName(name, surname) {
 return name + " " + surname
}
JavaScript

import {name, surname} as userdata from './userdata'
import getFullName from './userdata'

console.log(getFullName(userdata.name, userdata.surname)) // "John Doe"

Promises

A commonly complained JavaScript problem is the named callback hell.

Since JavaScript is an asynchronous language, it does not wait for tasks to be done. If a
task takes long to finish, the code continues its flow. It can lead problems, since a function
that did not finish running yet cannot return its value.

JavaScript

let response = asyncHTTPRequest('https://site.com')
console.log(response) // null

Because of this, it's common for JavaScript functions to receive, as one of the arguments, a
callback function (usually anonymous, but not mandatory) that gets called, receiving the
function execution result as argument.

JavaScript

asyncHTTPRequest('https://site.com', function(result) {
 console.log(result) // site.com content
})

However, once your flow needs to have multiple callbacks, your code gets pushed to right
thanks to the indentation. Here comes the callback hell.

JavaScript

asyncHTTPRequest('https://site.com/api/gettoken', function(token) {
 asyncHTTPRequest('https://site.com/api/getprofiledata?token='token,
function(result) {

asyncHTTPRequest('https://site.com/api/getuserwallets?token='+token+'&id="res
ult.id', function(wallets) {
 wallets.map(function(wallet) {

 19

asyncHTTPRequest('https://site.com/api/getwalletbalance?token='+token+'&walle
t='+wallet, function(balance) {
 // :(
 })
 })
 }
 }
})

Promises allows defining callbacks in a linear way, avoiding the push right.

JavaScript

new Promise((resolve, reject) => {
 asyncHTTPRequest('https://site.com/api/gettoken', resolve)
}).then(token) => {
 return new Promise((resolve, reject) => {
 asyncHTTPRequest('https://site.com/api/getprofiledata?token='token,
resolve)
 })
}).then((result) => {
 return new Promise((resolve, reject) => {

asyncHTTPRequest('https://site.com/api/getuserwallets?token='+token+'&id="res
ult.id', resolve)
 })
}).then((wallets) => {
 wallets.map(function(wallet) {

asyncHTTPRequest('https://site.com/api/getwalletbalance?token='+token+'&walle
t='+wallet, balance => {
 // :)
 })
 })
}).catch((error) => {
 console.log("Error", error)
})

Async/await

Async/await are new ways to represent promises that makes the code even more readable.

By writting await before invoking an asynchronous function, hypothetically the JavaScript
interpreter will wait for the function result before continuing the code flow.

Under the hoods, what happens is that asynchronous functions actually are returning
promises (the interpreter understands so). When the function returns a value, the
interpreter understands it as a promise resolve. If the function throws some value, the
interpreter understands it as a promise rejection. Therefore, instead
of .then()//.catch(), the developer will use try/catch.

 20

The code from the previous example gets a lot of readability improvements when using this
feature. Of course the pseudo-function asyncHTTPRequest must be modified not to

accept a callback, but use a return instead. It's easy to hack the function to accomplish it:
JavaScript

function HTTPRequest(url) {
 return new Promise((resolve, reject) => {
 asyncHTTPRequest(url, resolve)
 })
}

And here is the usage:

JavaScript

async function main() {
 try {
 let token = await HTTPRequest('https://site.com/api/gettoken')
 let result = await
HTTPRequest('https://site.com/api/getprofiledata?token='token)
 let wallets = await
HTTPRequest('https://site.com/api/getuserwallets?token='+token+'&id="result.i
d')
 wallets.map(wallet => {
 let balance = await
HTTPRequest('https://site.com/api/getwalletbalance?token='+token+'&wallet='+w
allet)
 // :)
 })
 } catch(error) {
 console.log("Error", error)
 }
}

main()

Adopted TC39 Proposals

These are suggestions for integration with JavaScript that were sent to ECMA and are
being tracked on an official repository, but that have been adopted by CapScript, which
already supports them.

BigInt and BigDecimal

Computers processors have two interesting problems about calculating with numbers: for
not using a decimal base like humans learn since preschool, they use a binary base that is
made exclusively by two numbers: 0 and 1.

However, a computer must be able to understand and show information using decimal
base, even if, under the hoods, binary base is used. Although computers are able to do it
pretty well, it is still very limited: huge numbers cannot be understood because nowadays'
processors are unable to convert them to their binary base. This is called integer overflow.

 21

At the same way, decimals aren't properly calculated due to the nature of numbers
representation and this can lead to a lot of problems. This is called floating point problem.

Because of this, and mainly for working with finances, CapScript calculates amounts using
strings. When math operations are needed, under the hoods, instead of asking the
processor directly to calculate the complete numbers, the operation is separated and
calculated by parts, from the lowest to the highest classes (starting with unities, then with
the tens, then with the hundreds and so on).

Divisions and calculations with decimal numbers are also done on the same way that
humans do manually. This leaves the processor with simple calculations like 1+2, instead
of complicated calculations that may lead to bugs, like 0.1+0.2 (which the processor
wrongly answers as 0.30000000000000004).

String.prototype.trimStart / String.prototype.trimEnd

As mentioned before, JavaScript strings aren't mutable.

These functions allow removing characters from the beginning or ending of the strings.

JavaScript

String("ABCDE").trimStart(1).trimEnd(2) // BC

Throw expressions

This feature allows throwing from more contexts.

A function or method throws a value usually when something goes wrong. However, it's
only possible to throw at a standalone statement.

JavaScript

function getUserName(user_id) {
 if (typeof user_id == 'undefined')
 throw new Error('Missing user_id')

 // function code
}

This feature allows snippets like the above to be reduced to:

JavaScript

function getUserName(user_id = throw new Error('Missing user_id') {
 // function code
}

Note that if user_id is not provided during the function call, the default value will be used.

And the default value throws an error.

Math extensions

 22

A set of improvements is done over the native Math object.

Math.clamp

This method grants that a value is inside a range, converting it to the nearest range
member if it is not on the range.

For example, if we have to grant that the variable x is inside 1 and 5, we do:

JavaScript

Math.clamp(x, 1, 5)

In this case, if x=10 it will become 5. On the same way, if x=-8, it will become 1.

Math.scale

It converts a value from a scale to another through the rule of three.

For instance, given that Celsius scale goes from 0 to 100, and Fahrenheit goes from 32 to
212 on the same values, we can convert 36o C to Fahrenheit by doing simply:

JavaScript

scale(36, 0, 100, 32, 212) // 96.8

Math.radians and Math.degrees

Converts between radians and degrees.

It also implies the existence of two
constants: Math.DEG_PER_RAD = π180π180 and Math.RAD_PER_DEG = 180π180π.

String.replaceAll

If one tries to replace a string inside a substring with JavaScript, could do:

JavaScript

String("Hello, user!").replace("user", "John") // Hello, John!

However the replace only happens once. If there are multiple occurrences of the substring
on the original string, only the first occurrence will be replaced:

JavaScript

String("Hello, user! How are you, user?").replace("user", "Jane") // Hello,
Jane! How are you, user?

In order to fix it, the developer must use regular expressions, with the global (/g) modifier:

JavaScript

String("Hello, user! How are you, user?").replace(/user/g, "Jane") // Hello,
Jane! How are you, Jane?

Or, with CapScript, just use .replaceAll:

JavaScript

 23

String("Hello, user! How are you, user?").replaceAll("user", "Jane") //
Hello, Jane! How are you, Jane?

Slice notations

Considering that JavaScript arrays start counting at 0 and not at 1, if one wants to get a
range of items from inside an array or string, must do:

JavaScript

let array = ['A', 'B', 'C', 'D', 'E']
array.slice(1, 3) // ['B', 'C']

This modification allows Golang-like slice notations:

JavaScript

array.slice[1:3] // ['B', 'C']

 24

Conclusion

Developing and keeping a programming language is not an easy task. It takes time, lots of
case studies with other languages and, mainly, experience, which is essential to know the
real need of a business.

JavaScript ecosystem is growing fast. Its ease for learning and accessibility allows
developers to start building amazing applications at light speed. Universities like Stanford
are already announcing their migrations to JavaScript for their classes, instead of the very
practiced Java, C/C++ or Pascal (Claburn, 2017).

However, it's clear that JavaScript specifications are very forgiving. While this is great for a
huge set of applications (perhaps for most of the applications developed using JavaScript),
for business and, mainly, banking companies, this forgiveness may be the source of huge
financial losses due to unseen software bugs.

With CapScript, we have achieved the freedom of making our adopted programming
language to work on the way we need. And choosing keeping it as a subset of JavaScript
instead of writing a new language from scratch allowed us to adopt new features and
improvements that the original JavaScript receives. Since this language is getting a great
attention now, it's obviously needed to keep track of every news on the JavaScript
environment.

What is more important for a banking company, we have improved our system's security by
adopting CapScript, and we were also able to optimize even more our code base.

CapScript will follow receiving updates constantly and our code base will get improved over
time. Its mission is to stay always one step further, maintaining a future-proof code base,
allowing our developers to deploy high quality services. CapScript is responsible for a
substantial portion of what makes Capitual unique, fast, responsive and loved by whoever
uses it.

 25

References

“Capitual One Case Study.” NodeJS Foundation, Sept. 2017, foundation.nodejs.org/wp-
content/uploads/sites/50/2017/09/Node.jsCapitalOneFINAL_casestudy.pdf.

“ECMAScript Language Specification.” ECMA International, June 2011, www.ecma-
international.org/ecma-262/5.1/.

“Introducing JSON.” JSON, 19 Mar. 2018, json.org/.

“JavaScript Data Types.” W3Schools, 14 May 2018,
www.w3schools.com/js/js_datatypes.asp.

Barr, Earl T.; Bird, Christian; Gao, Zheng. To Type or Not to Type: Quantifying Detectable
Bugs in JavaScript. 2017.

Claburn, Thomas. “Stanford Uni's Intro to CompSci Course Adopts JavaScript, Bins Java.”
The Register, Software, 24 Apr. 2017,
www.theregister.co.uk/2017/04/24/stanfordtestsJavaScriptinplaceofjava/.

Collinsworth, Troy. “Node.js: Do More with Less.” LinkedIn, 15 Nov. 2017,
www.linkedin.com/pulse/why-majority-embrace-nodejs-troy-collinsworth/.

Elliott, Eric. “You Might Not Need TypeScript (or Static Types).” Medium, JavaScript Scene,
5 Dec. 2016, medium.com/JavaScript-scene/you-might-not-need-typescript-or-static-types-
aa7cb670a77b.

Flanagan, David. JavaScript: the Definitive Guide. 5th ed., O'Reilly, 2007.

Flanagan, David. JavaScript: the Definitive Guide. 6th ed., O'Reilly, 2011.

Harrell, Jeff. “Node.js at PayPal.” PayPal Engineering Blog, PayPal, 22 Nov. 2013,
www.paypal-engineering.com/2013/11/22/node-js-at-paypal/.

Hayat, Sharmeen, et al. “Strict Types: Typescript, Flow, JavaScript - to Be or Not to Be?”
Medium, Codeburst, 20 Dec. 2017, codeburst.io/strict-types-typescript-flow-JavaScript-to-
be-or-not-to-be-959d2d20c007.

Kyle, Jamie, et al. “Usage.” Flow, Facebook, Inc., 5 Apr. 2017, flow.org/en/docs/usage/.

	Abstract
	Table of Contents
	Introduction
	Finances need accuracy
	Finances need reliability

	Type checking as a way to avoid software bugs
	JavaScript data types
	Numbers (0, 1, 1e2, 1.5, 1e-9)
	Strings ("Hello, world")
	Object ({foo: "bar"}, [1, 2, "foo"])
	A note about JSON

	Boolean (true, false)
	Functions (function fn() {}, function() {, () => {})
	Undefined (undefined)

	An overview on JavaScript type checking methods
	CapScript
	It's all about JavaScript - a more robust one
	Which features do CapScript support?
	Strong typing
	Fully ES6, ES7 and ES8 compliant
	Classes
	Constants and scoped variables (let)
	Arrow functions (() => {})

	Default function argument values
	Variable destructuring
	Rest Operator
	Spread
	Template literals
	Short property notation
	Import/export
	Promises
	Async/await

	Adopted TC39 Proposals
	BigInt and BigDecimal
	String.prototype.trimStart / String.prototype.trimEnd
	Throw expressions
	Math extensions
	Math.clamp
	Math.scale
	Math.radians and Math.degrees
	String.replaceAll
	Slice notations

	Conclusion
	References

